Week 11:
 Relative extrema, Higher derivatives, Curve sketching and Absolute extrema

11/3

Group 1

Find all relative extrema for the following functions, as well as where each function is increasing and decreasing.

1. $f(x)=2 x^{3}-3 x^{2}-72 x+15$
2. $f(x)=6 x^{2 / 3}-4 x$
3. $f(x)=x^{3} e^{x}$

Group 2

A study on optimizing revenue from a website considered dividing customers into two groups based on a value x between 0 and 1 , where x measures the proportion of the total bandwidth requested by a customer. Customers with a request less than x were considered low revenue, and those above x high revenue. The expected revenue from the low revenue customers was described by

$$
R(x)=C x\left(1-e^{-k x}\right)
$$

where C, k are positive constants.
(a) Find $R^{\prime}(x)$ and use it to find value of $x \in[0,1]$ the revenue is increasing.
(b) Find R " and find for which $x \in[0,1]$ the function is concave up.

Group 3

Sketch the curve

$$
f(x)=-2 x^{3}-9 x^{2}+108 x-10
$$

Group 4

A marshy region used for agricultural drainage has become contaminated with selenium. It has been determined that flushing the area with clean water will reduce the selenium for a while, but it will then begin to build up again. A biologist has found that the percent of selenium in the soil x months after the flushing begins is given by

$$
f(x)=\frac{x^{2}+36}{2 x}, 1 \leq x \leq 12
$$

When will the selenium be reduced to a minimum? What is the minimum percent?

Group 5

ind the absolute extrema if they exist, as well as all values of x where they occur, for each function, and specified domain.
(a) $f(x)=x^{3}-2 x^{2}-15 x+10 ; x \in[-2,10]$
(b) $f(x)=x+e^{-2 x} ;[-2,3]$

Extra Problems

1. Find the absolute extrema if they exist, as well as all values of x where they occur.
(a) $f(x)=4 x+\frac{54}{x^{2}}+2, x>0$
(b) $f(x)=x \ln x, x>0$
2. Sketch the curve

$$
f(x)=\left(e^{x}+e^{-x}\right) / 2
$$

3. Find the second derivative of the following functions:
(a) $f(x)=x^{3}+6 x^{2}-9 x-8$
(b) $f(x)=\left(x^{2}-1\right)^{2}$
(c) $f(x)=4 x \ln x$
(d) $f(x)=x / e^{x}$
